
of the surrounding medium in a single-flow heat exchanger. For the latter, Z(T) ~ i, so 
that in this case ~z may be excluded from consideration. 

NOTATION 

r, time, sec; x, normalized coordinate; T, temperature, K; Cp, isobaric specific heat, 
J/kg.K; G, heat-carrier flow rate, kg/sec; p, density, kg/m3; ~, pipeline volumes, m3; ~, 
heat-transfer coefficients, W/m2"K; H, heat-transfer surface, m2; q, effective heat fluxes, 
W. Indices: S, forward flow; R, reverse flow; w, dividing wall. 
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SOLUTION OF INVERSE PROBLEMS FOR A SYSTEM OF QUASILINEAR 

EQUATIONS OF HEAT CONDUCTION IN A SELF-SIMILAR REGIME 

A. D. Iskenderov, T. B. Gardashov, 
and T. M. Ibragimov 

UDC 536.24 

Explicit solutions are obtained for inverse problems for a system of heat-conduc- 
tion equations in a self-similar regime. The thermophysical characteristic being 
sought depend on the temperature distribution. 

Mathematical modeling of a stationary heat-exchange process in two semiinfinite rods of 
different materials, joined by an "ideal" contact, is closely connected with the solution of 
an inverse problem concerned with the determination of the coefficients in the following sys- 
tem of nonlinear differential equations: 

M n 

OT~ O [ ~ (Tn) aT. 1 
g=l 

(x,t)E~, (1) 

with initial and boundary conditions 

Yl(x, 0)=u~, x < 0 ,  T2(x, 0)=u~, x > 0 ,  

T1 (0, t) = r~ (0, t); 2% I(T 0 aT1 [ = ~,~ (r2) or~ [ , I~=o -~-xj~=o t>o ,  

(2) 

(3) 

where u n are given constants, n = i, 2. 

The system (1)-(3) admits a self-similar solution of the form Tn(x, t) = Vn(Z), where 
z = xt -I/2 and the function Vn(Z) satisfy the equations 

S. M. Kirov Azerbaidzhan State University. Institute for Problems of Deep-Seated Gas- 
Oil Deposits, Academy of Sciences of the AzSSR, Baku. Translated from Inzhenerno-Fiziches- 
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and the conditions 

d Z~(v~) + z G  (v~) + 
dz dz j ~- q i ~ 6 ( z - - z i ) = O ,  z6D~,  

v~ (- -  o~) = u .  v.,. ( +  oo) = .~, 

(4) 

(5) 

d~ I I v~ (o) = v~ (o), ~ (v~) -77/~=o = h (v~) -57[ k=o" ( 6 )  

Our aim is to solve an inverse problem concerned with determination of the coefficients 
of Eq. (i). It is clear that Eqs. (1)-(3) are insufficient for determination of these co- 
efficients. It is therefore necessary to adjoin additional conditions to system (1)-(3). 
We introduce several such typical conditions commonly employed in solving inverse problems: 

T~(n~, O = ~ ( t ) ,  N~6D~, t > O ,  (7)  

T,~(x, t2~= r x6D~,  n =  1, 2. (8)  

Each of  c o n d i t i o n s  ( 7 ) ,  (8)  has a r e a l  p h y s i c a l  meaning. Func t ions  ~n(X) g ive  t he  tem- 
p e r a t u r e  distribution at the instant of observation t = tob; functions Cn(t) yield the tem- 
perature values at points DneDn for all times t > 0. By assigning the functions Cn(t) or 
~n(X), the functions Vn(Z) , and hence also the functions Tn(x, t), are determined uniquely. 
Actually, 

~,-~:~ = ~ ~;~ 7 = *~ \~;~ V , ~D~, l>0 (9) 

Functions Tn(x , t) are classical solutions of boundary-value problem (1)-(3). It is 
natural to assume that the functions Cn(t), 9n(X) satisfy compatibility conditions, i.e., 

~ (o) = u~, ~ (o) = .~, r (+ =) = ~ (+ =), r (o) = r (o), 

r ~ )  = Ul, r (+  ~ )  = g2" 
Conditions, different, in fact, from conditions (7), (8) exist which make it possible 

to determine a self-similar solution of system (I). In order to avoid considering each of 
these cases separately, we assume that self-similar solutions Vn(Z) of system (i) are given 
and that it is required to determine one or several of the coefficients of system (i). Us- 
ing relations (9), it is not difficult to rephrase the conditions imposed on functions Vn(Z) 
onto the functions ~n(t), 9n(X), n = i, 2. We introduce the notation r n min Vn(Z), R n = max 

g Z 
Vn(Z) and assume that functions Vn(Z) have continuously differentiable inverses Fn(vn), de- 
fined on [rn, Rn] with domain of values on Dn, n = i, 2. 

Let Cn(T) > 0 be given continuous functions, and let qin be given numbers. From Condi- 
tions (i)-(3), for the given functions Vn(Z), twice continuously differentiable, we are re- 
quired to determine functions In(T) , n = i, 2, positive and continuous on [r n, Rn]. We 
assume, in addition, that the number 11(vi(0)) = K 0 > 0 is also given. 

We integrate Eq. (4) for n = 1 from z to 0; for n = 2 we integrate it from 0 to z; we 
then obtain 

O 
~I(Vl) do I d~l ( 0 ) ;  [ @  d~ l MI ] 

d z  = h (v~ (0)) dz ~C~(~) ~ + ~ q~a(~-- z~) d~, z < O, 
i=1 2 

0 
~ (v~) dv~ = Zo (v~ (0)) dv~ (0) ~G (v~) d~ ~=~ 

" d z  " d z  
z 

I f  in t h e s e  e x p r e s s i o n s  we t ake  accoun t  of  c o n d i t i o n s  (6) and t he  f a c t  t h a t  h l ( v l ( O ) )  = 
<0, we o b t a i n  

[a~o '!-~ d~,(o) ~c . (~ . )  - ~  + ~  q , , ~ ( ~ - z ~ )  d~ 1 ( l O )  
%n (V.) = \ dz ) • dz . i21 ~ ' 

0 
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In these expressions we go over to the inverse functions z = Fn(Vn): 

~,~ ( vn) dF~ (G~) • - -  . . dv~ [ dr. i T~  F.(s) C~(s) + ~ qi~6(Fn(s)-zi) ds (ii) 
i ~ l  

The right hand member in relations (I0), (;~Y)is"-~ assumed to be continuous, positive, and 
bounded. 

We remark that if the coefficients In(T) > 0, qin are given, the coefficients Cn(T) > 0 
can be found by the method presented above. The unknown coefficients Cn(T) in the system 
(I)-(3), when In(T) and qin are given, can be calculated from the expressions 

dv, (z) d -~,, (v,,) -5 ~ qi,fi(z zi) (12) C ~  ( v ~ )  = - -  2 z - -  , 

o r ,  i n  t e r m s  of  t h e  i n v e r s e  f u n c t i o n s ,  

G(v~)-- -~F7 ~ (v.) ~ L,(v,,) ~v , ,  + - - ~ ]  q.,~(G(v,~)--z3 �9 (13) 
dvn i=~ 

The right hand side of these relationships is assumed to be continuous and positive. Using 
expressions (i0)-(13), we can determine the p~irs of functions {Ck(T), Is.k(T)}, k = 1 or 
k = 2. 

We consider now a process described by the following system of equations: 

OT. 0 [~,~(T~)OT.] 
C.(T.) Ot Ox [ -~-xJ + : ( - -1)"  Id(TO--d(T~)], x > 0 ,  t > 0 ,  (14)  

subject to the conditions 

T.(x,t)l~=o=O, x > 0 ,  T"(x, t)l~.=:0, t>0,  (15)  

/ OT1 OT2]l T~(O, t)= T~(O, t), [~(TO + ke(T=) -~x]l~= ~ = ql ~, t > 0 ,  (16)  

where k > 0, q ~ 0 are given constants. 

We assume that Cn(T) = C0nT~ , In(T) = X0n T=, d(T) = d0 Tv, where 10n > 0, Con > 0, d o 
9, ~ and o are some numbers, and v = ~ + i - l/k, I - (7 - a) k > 0. System (14), under 
conditions (15), (16), admits a self-similar solution of the form Tn(x, t) = tkvn(Z), where 
z = x/t1-(7 -~ The functions Vn(Z) then satisfy the conditions of the system 

Co~V~ (z) kv. (z) -- (1 -- (V - -  ~) k) z dz = ~z v~(z) dz 

(. o dr ,+ dye) 
= q. (18)  v,~(+oo)=-O, vl(O)=v~(O), i %iv, dz ~o~v,~ ~ z  ~=0 

Assume now t h a t  we wish  t o  d e t e r m i n e  t h e  ~ o e f f i c i e n t s  Cn(T) > 0.  i n ( T )  > 0, d (T)  o f  
system (14); this amounts to finding the unknown constants in their expressions. Let c02 > 
0, I01 > 0, o, ~ be given constants; wewish to determine c01 > 0, I02 > 9, d o ~ 0. Let 

A,~ =v~(z~) [kv.(z~)--(1--k(?---~))z, dv.(z,)dz 1' 

azd [ dv,,(z,)],dz E .  - -  v~ (O) - -  B, ,  = -."7"- v,~ ( z i )  

D = v~ (zl) - -  v,~ (z0; 

�9 dv,~ (0 )  

dz 

Let Vn(0), dvn(0)/dz be given; also, at an arbitrary point z I > 0 let the values of the 
functions Vn(Z) , dvn/dz, d2vn/dz 2, and (q - loiEl)/E 2 > 0, [BIE2X0~ + B2( q - 101E l) - A2E 2- 
c02]/AiE 2 > 0, AIDE 2 ~ 0 be given. 

System (17) is valid for an arbitrary z.e{9, ~). If we write system (17) at point z I, 
make use of relations (18) and the notation adopted above, we obtain 

Alcol--Ddo = Bl~ol, B~L--Ddo=-A2c,,2, E ~  = q--El~t. 
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Under the above assumptions this system has a unique solution: 

cox = [B~E,,~s + B2 (q -- )~o,E,) -- A.zEr ~,o~ --= (q -- s (19) 

do = [B.~ (q -- s -- AoEr 

An analogous formulation is valid if, instead of c01, h02, do, we seek other numerical 
parameters. 

Assume now that v = o + i, ~ = (ko + o + l)k -z. From conditions (14), (16), and 

T~(x, 0 ) = 0 ,  T~(I, t)::O, O ~ x ~ l ,  / > 0 ,  (20) 

we are required to find the coefficients of system (14), where s > 0 is a given number. 
In this case problem (14), (16), (20) admits a self-similar solution in the form Tn(x, t) = 

k t vn(x) Proceeding as we did non the derivation of formula (19), we obtain 

analogous expressions for the unknown numerical parameters. 

Finally, we consider a process described by the system 

C,, C~ (r .)  at ..... Ox %'' )~ (T~) + -d,, d,~ (r,,) (21) 
\ Ox / Ox J . 

w i t h  i n i t i a l  and boundary c o n d i t i o n s  

T~(x,O)=up x < 0 ,  T~(x, 0)=u,,,  x > 0 ,  Ta(O,t)=T~(O, t), (22) 

\ O x )  ~ L=o : ~ ( T ~ ) ~  \-'~--x ) --~-f'~=o " (23) 

Here ~n(P) = gon P~ ~n(P) = ~on P~ an(P) = fionPO+=, and Cn(T) > 0, Xn(T)_> 0, dn(T) are  con- 
t i n u o u s  f u n c t i o n s  d e f i n e d  in ( -  ~, + ~) ,  u n a re  g iven  numbers ,  Con > 0, ~on > 0, don and o 
are certain numbers, n = i, 2. 

System (21) under conditions (22) and (23) admits a self-similar solution of the form 
Tn(x, t) = Vn(Z), where z = xt -I12 Functions Vn(Z) then satisfy conditions of the system 

dz \ dz ] dz J + - 2 -  zC,,(v~) Cn k dz ---~z- +dn(vn)-dn ~ dz ] O, (24) 

v l ( - - o o ) = u a ,  v 2 ( + o o ) = u 2 ,  v x (0) = v; (0), ( 2 5 )  

ciz / ~-z p=0" (26) 

Problems considered for this case are the inverse problems of determining the coeffi- 
cients hn(T), the coefficients Cn(T), and the coefficients An(P), Cn(P), dn(P), n = i, 2. 
All of these problems are similar to those considered above. In all cases involving de- 
termination of thermophysical characteristics, explicit expressions are obtained which dif- 
fer insignificantly from corresponding expressions obtained above. We consider as an exam- 
ple the problem of determining hn(T), n = i, 2. 

Let Cn(T) > 0, dn(T) be given continuous and bounded functions; let C0n > 0,~0n > 0, 
d0n and o be given numbers; it is then required to determine from the given self-similar 
solutions Vn(Z) the unknown coefficients ~n(T). Then proceeding as was done in the deriva- 
tion of formula (ii), we obtain the following expression for the unknown coefficients ~n(Vn) 
in problem (24)-(26): 

~m (vn) = ~ l [ dFn (v') [~ { [ dF,~ (vn) ] -~ 
dr-----f--- • - 

J ~] UTI 
(27) 

--j [ + ~.Fn (s) Cn (s) + dond.. (s) ( ds ) ~] (as-(S) 

vn)O) 
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TABLE i. Comparison of Exact and Approximate Values 
Coefficient ll(v I ) 

of the 

I I I  I I I  IV V V1 VI  V l l l  

0,6 
0,7 
0,8 
0,9 
1,0 
1,1 
1,2: 
1,3 
1,4 

0,6045 
0,7091 
0,8132 
0,9170 
1,0204 
1,1235 
1,2262 
1,3286 
1,4307 

--2,841.1012~ 
1,216.10 n 
5,458.10 .2 
4,614.101~ 

--2,544.10'~ 
--7,353.10 t3 
--2,840.1013 

5,543.10n 
3,720.10 ~3 

0,6067 
0,7104 
0,8201 
0,9294 
1,038 
1,146 
1,251 
1,354 
~,453 

1,042.10 -3 
1,963.10 -2 
2,878-10 -~ 
3,784.10 -~ 
4,680.10 -z 
5,564.10 -~ 
6,432.10 -~ 
7,282.10 -2 
8,109.10 -~ 

0,5858 
0,6863 
0,7862 
0,8854 
0,9936 
1,081 
1,176 
t,270 
1,363 

2,1813 
2,3297 
2,4512 
2,5507 
2,6321 
2,6988 
2,7534 
2,7981 
2,8347 

0,5417 
0,6359 
0,7277 
0,8164 
0,9015 
0,982t 
1,057 
1,I26 
1,186 

It is assumed there that the right-hand side of Eq. (27) is continuous and positive. 

Equation (i) describes nonstationary heat-exchange processes in two semiinfinite rods 
of different materials, joined by an ideal contact [i]. In [21, 3] and other papers, the in- 
verse problems considered involved determination of coefficients of a single equation in a 
self-similar regime. In the present paper consideration is given for the first time to a 
self-similar regime process f~r a system of equations. 

In studying inverse problems it is of great importance to separate out those special 
regimes for which explicit solutions are possible. These solutions can be used as the basis 
for experimental methods of determining physical characteristics of media. In this regard, 
however, one must take into account an instability of a solution of inverse problems [4-7]. 
Examples show that the problems considered above are also unstable. Explicit formulas are 
convenient in that they make it possible to find the simplest, and sufficiently precise, 
stable algorithms for the solution of the problems in question. For this purpose, in the 
explicit formulas (10)-(13) the derivatives of the unknown functions and the improper in- 
tegrals are replaced by corresponding regularized operators [4]. In the calculations the 
derivatives dv(z)/dz are replaced by the expression [v(z + h) - v(z)]h -l, where h = 61-~, 
and 6 is an error in the representation of the function v(z); ~ is a parameter, ~e(O, i). 
Integrals over an unbounded domain are replaced by integrals over a bounded domain so that 
the remainder terms would not exceed errors in the initial data. These approximations are 
comparatively crude, but their simplicity simplifiesthe computational process. 

We carried out numerical calculations on model examples. We supply one of these here. 
Suppose we wish to determine the coefficients 11(vl)i,: 12(v2) from conditions (1)-(3) when 
CI(T) = Ca(T) = I, qin = 0, i = I, Mn, n = i, 2, TI(- i, t) = 3 - exp(-t-i/=), T2(I, t) = 
i + exp(-t-II2). It follows from Eq. (ii) that It(T) = 0.511 - In(3 - T)], 12(T) = 0.511 - 
in(T - i)]. It can easily be seen through direct verification that in this case Tl(x, t) = 
3 -- exp(xt-iI2), T2(x , t) = i + exp(- xt -112) satisfy the system (1)-(3). 

Table i shows the results of numerical calculations of the solution of the inverse prob- 
lem for determining kl(vl) from conditions (i}-(3) when TI(- i, t) = 3 - exp(- t-I/2), T2(I, 
t) = i + exp(- t-i/2). Use was made here of formula (i0). Here in column I we give the 
nodes of a nonuniform grid introduced in the interval [2, 3]; column II gives the exact va- 
lues of kl(Vl); column III shows the results of computations of 11(v I) from formula (i0) 
when the error 6 of the initial data is equal to zero. Here there is no need to introduce 
regularization. Column IV shows results of calculations when 6 = 0.001 without regulariza- 
tion. The results testify to the instability of the solution. In column V we give results 
of the calculations when 6 = 0.001, a = 0.5, i.e., in this case regularization is applied. 
These results agree with the exact solution. Column VI shows results of calculations when 

= 0.001, ~ = 1.5. Lack of agreement of the calculated results with the exact solution is 
a consequence of the fact that the criterion for choosing the parameter a is violated, since 

= 1.5 and a~(0; i). The condition ~e(0; i) of regularization is violated [4]. Columns 
VII and VIII give results of calculations for errors ~ = 0.03 and 6 = 0.15 for a = 0.i. They 
are in good agreement with the exact solution. Similar results hold also for l=(v2). 

NOTATION 

Tn, temperature; Cn(T) , volumetric heat capacity; In(T) , thermal conductivity coefficient; 
qin, density of point sources; x, coordinate; t, time; tob, instant of observation; Mn, num- 
ber of sources; xi, coordinates of sources; 6(x), Dirac delta-function; Dl{x : x < i} ; D 2 = 
{x : x > 0}; a n = D n • t > 0}, n = i, 2. 
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